Energy Adaptive Glass Matter

ثبت نشده
چکیده

The critical aims of glass envelope design and development must be to enable measures upon glass buildings to prevent uncontrolled heating of the building surfaces, increase emissivity and the impacts of this heat conduction into the building interior spaces. Current glass envelopes depend upon hybrid facades, double skin glass facades; solar shading; passive solar energy systems (transparent insulation materials, solar glazing balconies) to reduce solar temperature gains upon this surface. The envelope performance is based upon measures in the reduction of heat conduction via the material that form its surface, to resolve the conflicts between services and fabric provisions (such as heating systems fighting cooling systems). New materials have been developed of increased performance to resolve this issue by product and component development. For example the integration of solar active elements within the glass panels. However glass building envelopes constructed in hot locations (where temperature are over 40 degrees) have the poorest lighting levels, as the needs to control thermal conduction and high energy consumption needs, to cool the building. These buildings are dependent upon artificial lighting and the reliance of HVAC systems. The current technological development strategies for the building envelope is a static one, by this understanding materials are used without the ability to react to differing climatic zones or recognition of its global positioning. This is in contrast to the nature’s adaptive functions, an adaptive bio-system in constant change to the influence of ambient temperature, solar radiation gain, exposure to wind and changing micro climatic variations. This reactive system is not transposed or reflected into the building envelope systems currently deployed. This non-reactive envelope gives little recognition of the response to climatic change or strategy variation to meet changing environmental situation. This approach is not reflected in nature, as these biosystems have the ability to adapt and control material composition. Could the innovation and direction of a nature-inspired intelligent control of glass matter enable a new paradigm that will lead us in a direction to discover more adaptive systems in a dynamic response to our climate. To use the frontiers of science, in materials, in chemistry and physics, at a nanotechnology and biotechnology scale for greater control of thermal conduction. Could the essence of nature forge evolution, in the creation of climatic responsive skins, by the principles of: material thermal facade behavior and thermal material temperature management. The employment of these objectives is to create material matter that is reactive in real-time to climatic change to enable thermal material management and regulation of its own material temperature. A dynamic skin that is responsive to the influence of ambient temperature, solar regulation gain as a adaptive biosystem. 2006, Eurostat [6]. Studies indicate by Earth Trends [7] that buildings in Europe account on average for 36% of the energy use: the nonresidential sector accounts for 8.7% and the residential sector for 27.5% of the total. Materials that form the surface areas of our buildings play a significant role, to create and modify environmental conditions for the activity within the spaces and this has a direct impact on primary energy demands. The requirements of heating, cooling, lighting and other appliances increase energy consumption and glass buildings in hot climates where temperatures are 40 degrees or higher, are vitally important in reducing energy demand in buildings. COM 639 [8] Citation: Alston ME (2014) Energy Adaptive Glass Matter. J Archit Eng Tech 3: 115. doi:10.4172/2168-9717.1000115

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Color Glass Condensate and the Glasma: Two Lectures

These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wavefunction important for high energy processes. The Glasma is matter produced from the Color Glass Condensate in the first instants after ...

متن کامل

An investigation on Mechanical Properties of Apatite-Wollastonite-Diopside Glass-Ceramics Composites

Apatite-wollastonite (A-W)-phlogopite glass-ceramic is considered to be difficult to resorb, but often, it has been incorporated in particulate form to create new bioactive composites for potential maxillofacial applications. With various compositions, the present work has attempted to prepare apatite-wollastonite (A-W)-phlogopite glass ceramic composites, by applying sintering. Here, three-poi...

متن کامل

Strongly Interacting Matter at High Energy Density∗

This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition . At high baryon density and low temperature, large Nc arguments are developed which suggest that high baryonic density matter is a third form of matter...

متن کامل

The color glass condensate and small x physics: 4 lectures,” Lect

The Color Glass Condensate is a state of high density gluonic matter which controls the high energy limit of hadronic matter. These lectures begin with a discussion of general problems of high energy strong interactions. The infinite momentum frame description of a single hadron at very small x is developed, and this picture is applied to the description of ultrarelativistic nuclear collisions....

متن کامل

The Effect of Processing of Corn Silage with Schizophyllum Commune on Chemical Composition, Ruminal Degradability and in Vitro Gas Production

Extended Abstract Introduction and Objective: To overcome the problems caused by animal feed shortages, efforts are made to increase the availability of nutrients and their digestibility, such as improving the nutritional value of forage plants through biological processing. Schizophyllum commune is an edible fungus of the basidiomycete’s family that has been used for biological processing of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014